
A tale of Rust,
the ESP32 and IoT
It can‘t be that hard…

Who am I?

Jens Reimann

• Principal Software Engineer

• Red Hat
• Middleware, Messaging, IoT

• Programming languages
• 90s: Basic, Pascal, C

• 00s: C, C++, Java

• 10s: Java, Go, Rust

@ctron

https://dentrassi.de

Telemetry data for Eclipse Hono

Goal of this talk?
Get you excited about Rust!

Why Rust?
Do we really need another programming language?

Rust

"A language empowering everyone to

build reliable and efficient software."

https://www.rust-lang.org/

Rust

“Rust is a language for systems programming.”

Jim Blandy & Jason Orendorff, Programming Rust

“Systems programming is for:
…

• Code that runs in very cheap devices, or devices that must be
extremely reliable

…

”

Rust is …

“A safe, concurrent language with the performance of C
and C++”

Jim Blandy & Jason Orendorff, Programming Rust

“…eliminate many classes of bugs at compile-time.”

https://www.rust-lang.org/

History of languages

http://rigaux.org/language-study/diagram.html

History of Rust

• Started 2006 by Mozilla employee Graydon Hoare

• Announced 2010 by the Mozilla Foundation

• Self-compiled 2011

• Getting things right, before moving on

• A community to grow the language, not only use it

“Rust was the third-most-loved

programming language in the 2015

Stack Overflow annual survey, and took

first place in 2016, 2017, 2018, and

2019.” – Wikipedia

Fixing stuff at compile time

• Have a compiler which understands your code

• Have language rules which prevent bugs

• Eliminate “undefined behavior”

• Reduce “unexpected behavior”

What is undefined behavior?

Undefined behavior: behavior, upon use of a nonportable or
erroneous program construct or of erroneous data, for which this
International Standard imposes no requirements

§3.4.3, Cx11

Undefined behavior: Renders the entire program meaningless if
certain rules of the language are violated.

cppreference.com

Undefined / unexpected behavior

Go FAQ

Q: „Why are map operations not

defined to be atomic? “

A: „…This was not an easy decision,

however, since it means uncontrolled

map access can crash the

program.…“

Java „CME“ - HashSet

“Fail-fast iterators throw

ConcurrentModificationException on

a best-effort basis. Therefore, it

would be wrong to write a program

that depended on this exception for

its correctness: the fail-fast behavior

of iterators should be used only to

detect bugs.”

A helping compiler…

Code
fn main() {

let mut s1 = "Foo";
let mut x = &mut s1;
assert_eq!(*x, "Foo");

{
let mut s2 = "Bar";
x = &mut s2;

}

assert_eq!(*x, "Bar");

}

Output
Compiling playground v0.0.1 (/playground)
error[E0597]: `s2` does not live long enough
--> src/main.rs:8:13
|

8 | x = &mut s2;
| ^^^^^^^ borrowed value does not live long enough

9 | }
| - `s2` dropped here while still borrowed

10 | assert_eq!(*x, "Bar");
| ---------------------- borrow later used here
|
= note: this error originates in a macro outside of the current crate (in

Nightly builds, run with -Z external-macro-backtrace for more info)

error: aborting due to previous error

For more information about this error, try `rustc --explain E0597`.
error: Could not compile `playground`.

To learn more, run the command again with --verbose.

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=cc5f9c6bbb709ac1c0e292b3042a4b40

The cost of a bug over time…

0

10

20

30

40

50

60

70

80

90

100

Compile Test Release

Bugs

Bugs

…with Rust

0

10

20

30

40

50

60

70

80

90

100

Compile Test Release

Bugs

Bugs

Dependencies

• “Crates” are the “JAR files of
Rust” … but contain code, not
binaries!

• Then “crates.io” is “Maven
Central for Rust”

• “cargo” manages
dependencies, and
orchestrates the build
and test

std

foo bar baz

libbaz.so

baz.dll

My App

The problem with „std“

• „std“ provides all kinds of functionality
• Files, Streams, …

• Network, Sockets, …

• …

• But also requires a POSIX-like operating system

• So, what about embedded systems? Like the ESP32?

#![no_std], “core” & “alloc”

• You can disable the usage of “std” and switch to “core” instead

• If you can provide an allocator, you can also use “alloc” for
dynamic memory allocations (like String, Vec, …)

• Some crates support this by using “features”, which
enable/disable features of the crate at compile time
• e.g. “serde” with “serde-json-core”

https://crates.io/keywords/nostd

https://crates.io/keywords/nostd

Unsafe Superpowers
• How?

• “unsafe {}” block

• “unsafe” keyword

• Why?

• Call other „unsafe“ methods

• Dereference raw pointers

• …

ESP-IDF & Rust

FreeRTOS

HTTP

TCP/IP WiFi

TLS

…

serde / JSON

alloc „http“„timer“

malloc

core

My App

Rust

C – ESP IDF

End-to-end example

https://github.com/ctron/rust-esp32-hono

https://github.com/ctron/rust-esp32-hono

End-to-end example

IDE Integration

Eclipse Corrosion

IntelliJ + Rust

One more thing…

How to compile for the Xtensa
architecture?

Forked LLVM, forked rustc and a bunch of
scripts

• Execute ~50 different commands

• Hope you have the right OS, in the right version, with the right

packages

• Wait ~3½ hours

• Enjoy … or try again

Containerized

• docker run quay.io/ctron/rust-esp
• –ti –v $PWD:/home/project

• Runs on Windows, Linux, (and should on Mac OS)

What lies ahead?

• Rust Runtime for AWS Lambda
• https://aws.amazon.com/blogs/opensource/rust-runtime-for-aws-

lambda/

• Rust Embedded Book
• https://rust-embedded.github.io/book/

• Linux kernel experiments with Rust
• https://lwn.net/Articles/797828/

• Microsoft
• https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-

to-more-secure-code/

• „~70% of the vulnerabilities Microsoft assigns a CVE each
year continue to be memory safety issues”

https://aws.amazon.com/blogs/opensource/rust-runtime-for-aws-lambda/
https://rust-embedded.github.io/book/
https://lwn.net/Articles/797828/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

Questions?
… and answers!

A few links

• Rust
• https://www.rust-lang.org/

• Rust Embedded Book
• https://rust-

embedded.github.io/book/

• Programming Rust
• O'Reilly Media

• Eclipse Corrosion
• https://marketplace.eclipse.or

g/content/corrosion-rust-
edition-eclipse-ide

• Rust for ESP32
• https://github.com/ctron/rust-

esp-container/

• Rust, ESP32, ESP-IDF, Hono
• https://github.com/ctron/rust-

esp32-hono

• LLVM for Xtensa
• https://github.com/espressif/llv

m-xtensa

• Rust fork for Xtensa
• https://github.com/MabezDev/r

ust-xtensa

https://www.rust-lang.org/
https://rust-embedded.github.io/book/
https://marketplace.eclipse.org/content/corrosion-rust-edition-eclipse-ide
https://github.com/ctron/rust-esp-container/
https://github.com/ctron/rust-esp32-hono
https://github.com/espressif/llvm-xtensa
https://github.com/MabezDev/rust-xtensa

Thank you!

